2 4 A ug 2 00 6 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

نویسنده

  • JAE-HYUN YANG
چکیده

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 4 Ju l 2 00 7 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

Invariant Metrics and Laplacians on the Siegel-jacobi Spaces

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

Invariant Metrics and Laplacians on Siegel-jacobi Disk

Abstract. Let Dn be the generalized unit disk of degree n. In this paper, we find Riemannian metrics on the Siegel-Jacobi disk Dn × C (m,n) which are invariant under the natural action of the Jacobi group explicitly and also compute the Laplacians of these invariant metrics explicitly. These are expressed in terms of the trace form. We give a brief remark on the theory of harmonic analysis on t...

متن کامل

Invariant Metrics and Laplacians

Let Dn be the generalized unit disk of degree n. In this paper, we compute Riemannian metrics on Dn × C (m,n) which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

Surfaces with Boundary: Their Uniformizations, Determinants of Laplacians, and Isospectrality

Let Σ be a compact surface of type (g, n), n > 0, obtained by removing n disjoint disks from a closed surface of genus g. Assuming χ(Σ) < 0, we show that on Σ, the set of flat metrics which have the same Laplacian spectrum of Dirichlet boundary condition is compact in the C∞ topology. This isospectral compactness extends the result of Osgood, Phillips, and Sarnak [O-P-S3] for type (0, n) surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005